Formulation of a Galerkin spectral element–Fourier method for three-dimensional incompressible flows in cylindrical geometries
نویسندگان
چکیده
A primitive-variable formulation for simulation of time-dependent incompressible flows in cylindrical coordinates is developed. Spectral elements are used to discretise the meridional semi-plane, coupled with Fourier expansions in azimuth. Unlike previous formulations where special distributions of nodal points have been used in the radial direction, the current work adopts standard Gauss–Lobatto–Legendre nodal-based expansions in both the radial and axial directions. Using a Galerkin projection of the symmetrised cylindrical Navier–Stokes equations, all geometric singularities are removed as a consequence of either the Fourier-mode dependence of axial boundary conditions or the shape of the weight function applied in the Galerkin projection. This observation implies that in a numerical implementation, geometrically singular terms can be naively treated by explicitly zeroing their contributions on the axis in integral expressions without recourse to special treatments such as l’Hopital’s rule. Exponential convergence of the method both in the meridional semi-plane and in azimuth is demonstrated through application to a three-dimensional analytical solution of the Navier–Stokes equations in which flow crosses the axis. 2004 Elsevier Inc. All rights reserved.
منابع مشابه
A Fast Immersed Boundary Fourier Pseudo-spectral Method for Simulation of the Incompressible Flows
Abstract The present paper is devoted to implementation of the immersed boundary technique into the Fourier pseudo-spectral solution of the vorticity-velocity formulation of the two-dimensional incompressible Navier-Stokes equations. The immersed boundary conditions are implemented via direct modification of the convection and diffusion terms, and therefore, in contrast to some other similar ...
متن کاملImplementation of D3Q19 Lattice Boltzmann Method with a Curved Wall Boundary Condition for Simulation of Practical Flow Problems
In this paper, implementation of an extended form of a no-slip wall boundary condition is presented for the three-dimensional (3-D) lattice Boltzmann method (LBM) for solving the incompressible fluid flows with complex geometries. The boundary condition is based on the off-lattice scheme with a polynomial interpolation which is used to reconstruct the curved or irregular wall boundary on the ne...
متن کاملAn Efficient Spectral-Projection Methodfor the Navier–Stokes Equationsin Cylindrical GeometriesII. Three-Dimensional Cases
An efficient and accurate numerical scheme is presented for the three-dimensional Navier–Stokes equations in primitive variables in a cylinder. The scheme is based on a spectral-Galerkin approximation for the space variables and a second-order projection scheme for time. The new spectral-projection scheme is implemented to simulate unsteady incompressible flows in a cylinder. c © 2002 Elsevier ...
متن کاملNumerical Simulation of Incompressible Flows in Cylindrical Geometries Using a Spectral Projection Method
An efficient and accurate spectral projection scheme for numerical simulations of incompressible flows in cylindrical geometries is presented and implemented for studying a number of canonical rotating flows.
متن کاملA New Three-Dimensional Refined Higher-Order Theory for Free Vibration Analysis of Composite Circular Cylindrical Shells
A new closed form formulation of three-dimensional (3-D) refined higher-order shell theory (RHOST) to analyze the free vibration of composite circular cylindrical shells has been presented in this article. The shell is considered to be laminated with orthotropic layers and simply supported boundary conditions. The proposed theory is used to investigate the effects of the in-plane and rotary ine...
متن کامل